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Using the two-zone model we consider unsteady heat transfer in filtrated dispersed 
systems. It is shown that the boundary zone must be taken into account. 

Unsteady heat transfer in dispersed systems is important in many applied problems, such 
as the calculation of thermal regimes in various technological processes (drying and baking 
of dispersed materials, heat treatment of elements in beds of a dispersed heat carrier, the 
operation of chemical reactors and other devices with dispersed beds in transient and un- 
steady regimes, and so on). On the purely scientific level the study of unsteady heat trans- 
fer is evidently the best method of determining the mechanism of heat transport in dispersed 
systems, as well as constructing adequate models. 

A rather detailed review of the phenomenological models of heat transfer has been given 
recently in [i]. Analysis of these models shows that there are two basic approaches to the 
study of the mechanism of heat transfer, which use different features of heat transfer in 
dispersed systems: a) the heterogeneity of the system over the entire volume of the sample 
is taken into account by introducing a temperature difference between the phases and allowing 
heat transfer between them [1-5]; b) the granular bed is treated as a quasi-homogeneous medium 
in which the temperatures of the different phases are equal and the dispersed structure of 
the bed is taken into account by introducing a zone of higher porosity near the heat-transfer 
surface [6-12]. 

There has not appeared in the literature up to the present time a well-founded discussion 
of which of these assumptions is necessary to describe heat transfer in a wide interval of 
experimental conditions. The purpose of the present paper is to analyze the possibilities of 
mathematical modeling of heat transfer from the point of view of the one-temperature, two- 
zone models (those belonging to group b) to determine the region of applicability of this 
group of models, and to compare the results with those of the two-temperature one-zone models 
(group a)). 

The two-zone model of external heat transfer in filtrated dispersed systems was developed 
in [i0, 12, 13] and shown to be applicable to steady-state heat transfer in fixed and fluid- 
ized beds. The basic feature of this model is that the zone of higher porosity near the heat- 
transfer surface is modeled as a gas layer whose effective thickness is determined from experi- 
ment. This model is used here to study unsteady heat transfer. 

Fixed Aerated Bed. We consider the heating (cooling) of a vertical cylinder in a granular 

bed. As shown in [12], for large values of the Peciet number (cfpfuR2/L%~) the equations of 
the heat transfer model can be written in the following dimensionless form: 

00f _ 020I + 1 00j Pe.~~ 
0 Fo O~ 2 ~ a~j ~ (1)  

(~~ ~ < ~~ 1); 

O0~ _ aO [__020~ 1 00~ 

(~:o+ 1 < ~ B )  
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A. V. Lykov Institute of Heat and Mass Transfer, Academy of Sciences of the Belorussian- 
SSR, Minsk. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 57, No. 3, pp. 412-419, 
September, 1989. Original article submitted April 22, 1988. 

0022-0841/89/5103-i039512.50 �9 1990 Plenum Publishing Corporation 1039 



~fO0 

% t  

Fig. i. 
a fixed aerated bed on time: 

m/sec (peas). 

3 
\ 

n l I I | 

0,0! O/ /,6' [0 /00 t sec 

Dependence of the heat-transfer coefficient of 
1)  u = 0; 2) 0 .6 ;  3) 1 . 3  

NU 

/0 

o, ot q< l I0 100 - Fo* 

Fig. 2. Intensity of unsteady heat transfer in a fixed aerated 
bed: I) l ~ =6.32; a ~ =0.95"10-2; Pe=0.13"10 -2 (peas, u = 1.3 

m/sec); 2) 10 = 6.27; a ~ = 0.79.10-2; Pe = 0.13.10 -2 (chamotte, 
u = 0.9 m/sec); 3) l ~ = 5.20; a ~ = 0.54.10-2; Pe = 0.68.10 -3 

(glass balls, u = 0.7 m/sec); 4) ~0 = 3.30; a ~ = 0.51.10 -2 , 
Pe = 0 (peas, u = 0); solid curves: numerical solution of (i)- 

(4); dashed curves: calculation using (6). 

with the conditions 
Oj(O, O=Os(O, 0 = 0 ;  0f(0, ~ 9 =  1; ~(Fo, ~O+l)=O~(Fo, ~o+i) ;  

a0y(Fo, ~o+ I) = Zo 00~(Fo, ~o+ I) . 00~(Fo,-B) _ 0; a0s(F~ ~o) _ A O01(F~ ~) (3) 
a~ ag ' a~ a Fo a~ 

The l a s t  boundary c o n d i t i o n  in (3) cor responds  to  z e r o - g r a d i e n t  h e a t i n g  ( c o o l i n g )  of  the  
c y l i n d e r .  

The system of  equa t i ons  ( 1 ) - ( 3 )  was so lved  n u m e r i c a l l y ,  u s ing  the  c o n s e r v a t i v e ,  abso- 
l u t e l y  s t a b l e  d i f f e r e n c e  scheme of  [14] w i th  implementa t ion  by t r i a l  and e r r o r .  Because the  
thermal properties of the gas film and dispersed bed are different, it was necessary to impose 

the following condition in order to obtain the required accuracy on the film-bed boundary: 

aTAt _ a~At 
(Aq) 2 (Ar2)2 ' 

where At, Arz, Ar 2 a re  the  (d imens iona l )  s t e p s i z e s  in t ime and c o o r d i n a t e  r in  t he  f i l m  and 
bed, r e s p e c t i v e l y .  From t h i s  c o n d i t i o n  we o b t a i n  a r e l a t i o n  between the  d imens ion le s s  s t ep -  
sizes: hl =]/a~176 h is the stepsize of a uniform network in the film, ~ : {~i = ~0 

~-ih, ~6[~ ~ ~-~l],i = 0, I, 2 ..... N; N = i/h}, is the stepsize between the first and second 

nodes of a nonuniform network in the dispersed bed, ~h ~ {~J6[~ ~ + I, B], j = 0, i, 2 .... K; hj = 

1.5hj-1}. 

Preliminary calculations on different networks showed that the values h = 0.1 and AFo = 

10m.0.001(Foe(10 m-l, 10m), m = i, 2, ..., for Foe(0.1)AFo = 0.001) are optimal. 

The heat-transfer coefficients were found using the equations 

~ 00j (Fo, ~) (4) 
= i : - -  lo O~[0f(Fo, ~)--0~(Fo, B)] ' 
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Fig. 3. Comparison of the experimental data of [17] with 
the values calc,,lated in the two-zone model (glass balls- 
air): I) d = 0.39 mm; 2) 0.93; 3) 2.07; 4) 3.05; 5) 5.05; 
solid curves: numerical solution of (1)-(3); dashed curves: 
calculation using (9). 
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Fig. 4. Comparison of the experimental and cal- 
culated data for unsteady heat transfer in fixed 
beds: i), 2), 3) d = 0.39 mm; 2.07; 5.05 
3.05 (glass balls-CO 2 [17]); 7), 8), 9), d = 0.39 
mm; 0.93; 2.07 (glass balls-freon-12 [17]); i0), 
ii), 12), 13), 14) d = 0.74 mm; 0.65; 0.44; 0.21; 
0.17 (copper balls-air [3]); I: numerical solution 
of (1)-(3) for freon-12; II; for air and_COs; III: 

Fo* 

c a l c u l a t i o n  u s i n g  (9) f o r  Nu =~o* NudFo * 
0 

k~ O01(Fo,.~ ~ 
~ - to O~Os(Fo, ~o) 

The coefficient X~ was calculated using the equations for a fixed aerated bed [15], X 7 - was 
calculated from the formula l~ + 0.0061cfpf~d, given in [i0]. Calculations were carried 

3 
through for the following materials: glass balls (d = 1.75 mm; u 0 = 0.85 m/sec; e 0 = 0.40); 
chamotte (d = 3.0 mm; u 0 = 0.95 m/sec; e0 = 0.48); peas (d = 5.7 mm; u 0 = 1.35 m/sec; e 0 = 
0.42). Because of the smallness of the quantity Os(Fo , B), the quantities ~i and ~2 were 
equal in all cases. The thickness s of the gas film was taken to be 0.1d [3]. Figure 1 
shows some typical results of calculations based on (1)-(3). It was established that at a 
certain time the heat-transfer coefficient reaches its minimum possible steady-state value, 
which coincides with the value calculated from the equation 

k~ ~o Y F U  + (k o Pe*l~) ~olK* 
~  R 1 -+- X~ o ] / P e *  K* K*, 

(5) 

obtained in [12] for steady-state heat transfer. 

A more graphic picture of the features of heat transfer in fixed aerated beds is given 
in Fig. 2, where the calculated values of ~ are constructed in dimensionless form. It is 
easy to see that as a ~ increases the steady-state value of Nu is reached more rapidly and 
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the ratio Nu/Nus m increases and approaches unity (Nus m is the value of Nu in the limit 
Fo + 0). The following simple interpolation formula provides a representation of the results 
which is convenient for analysis: 

Nu = Nuss(1 - -  e -2"~ vo*) + s 
~xo/VTo + V~--~o* ' 

(6)  

where k is the coefficient in the expression s = kd determining the thickness of the gas 
film; Nuss = assd/X ~, and ass is calculated using (5). In the absence of aeration (u = 0) 

we have Nuss = 0. 

To test the correctness of the numerical calculation, and using the fact that when the 
heat transfer is highly unsteady the intensity does not depend on the shape of the heat- 
transfer surface [15],* we obtained the analytical solution for the heating (cooling) of a 
plate in a fixed bed without aeration (u = 0): 

00I 020I 0~<~<1"  (7)  
0 Fo O~ z ' 

00,  --a ~ I < ~ B ,  
0 Fo 0~2 ' (8)  

subject to conditions analogous to (3). The expression for the coefficient a has the form: 

W e .~Fo 

= Io ~ .  an e--~2nFo ' 

s176 1~. (B -- 1) cos I%, -F D,~ cos 1~" (B -- 1) 
' z . -  -V~ sin .Va ~ -I/'~ sin D,~, 

(i n = - - - -  ko ~ . ( B - -  1) s inl~ + cos I ~ ( B - -  1) -I/~ sin "V~ ] / ~  cos D~ -- 1, 

( s 1 7 6  ] b~ = - -  tLt~ a ~ + 1 sinl~cos I ~ ( B - -  1) , Y~ 
+ (  A~~ 1) ) -- 

a ~ ~- 1 + A cos 8~ cos 8= (B.v~ 1) 

( (1 -F A) s 1 7 6  + A ( B -  I)_1/~ ) sin t1'~ sin D= (B - 1 ) '1 /~  

( s B - - 1  ) D~(B--1) . 
-- i~ -~ 3/~ cos I% sin "1/~ ' 

+ 
(9) 

Dn are the roots of the characteristic equation 

k ~ V.,~(B-- 1) (Acos 1~ _l~,~sinl~) + -I/-----~- sin -I/~ 

+ cos 
l~,, (B - -  1) 

-g> ( ~  cos ~ -F A sin ~.) = 0. 

*In the framework of the two-zone model this experimental fact is easily explained. Indeed, 
for small times of contact of the particles with the surface, the particles are not able to 
change the surface temperature significantly. Hence practically the entire thermal resistance 
is concentrated in the gas film and it does not depend on the shape of the heat-transfer sur- 
face because of the small thickness of the film. 
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An example of the comparison between the experimental data [17], the numerically cal- 
culated values using (1)-(3), and the values obtained using the exact solution (9) is given 
in Fig. 3. We see that in the highly unsteady region the numerical calculation agrees closely 
with the results calculated using (9) and also with the experimental data. 

The data of [17] and also the experimental results of [3] on heat transfer of a moving 
bed of copper balls with a plane surface are shown in Fig. 4 in dimensionless coordinates. 
We see that the experimental points of [17] at small Fo ~ are grouped about the straight line 
Nu = I0, while the data of [3] are grouped about the line Nu = 16. Hence the effective thick- 
ness of the gas film can be obtained for the two experiments. At small Fo* the heat-transfer 
coefficient is completely determined by the contact thermal resistance (the resistance of the 

gas film Rf = 10/X~): Nulim~--d/R~ = d/s = d/kd = i/k. Hence k = i/Nus m and therefore s = 
0.01/d for the first group of data and s = 0.06d for the second. For these values of s 
there is good agreement between the experimental and calculated data.~ 

The experimental data cited above are graphed in Fig. 5 in the Nu-Fo plane, which is 
often used to analyze unsteady heat transfer data. We see that there is a rather significant 
scattering of the points at small Fo. Hence the conclusion that the quantity Nu is indepen- 
dent of the thermal properties of the gas and the particles in the small Fo region is of 
restricted validity~ as is the equation Nu = 2 in this region (see [16], for example). This 
is probably due to the fact that the experimental results were analyzed without the use of 
a system with a highly heat-conducting material (such as copper), for which the effect of the 
gas layer [3]) must be taken into account. 

Developed Fluidized Bed. The system of equations (i)-(3) was also used to model unsteady 
heat transfer in a fluidized bed. The horizontal thermal diffusivity of the bed and its 
porosity were found from the equations established in [18] and [19], respectively. The quan- 
tity s was determined from the formula s = 0.14d(l-e) -2/3 [i0], and %~ was determined from 

the expression given above, as in the case of a fixed bed. The first equation of (4) was 
used to determine the quantity ~. Calculations of ~ using (1)-(3) were carried through for 
the materials listed above for different rates of air filtration. It was established that 
in all caes the coefficient ~ reaches its steady-state value (~/s almost instantaneously, 
and remains constant thereafter. This is natural if we take into account the conclusion of 
[i0] that the thermal resistance of the gas film dominates the heat transfer of a fluidized 
bed with a surface. This is also consistent with the calculations for a fixed bed and with 
(6), from which it follows (as noted above) that as a ~ increases the steady-state value of Nu 
is reached more rapidly and Nu/Nus m + i. Unfortunately, there is no reliable experimental 
data in the literature on unsteady heat transfer in fluidized beds, and hence the conclusions 
obtained here cannot be checked. 

Discussion of the Results. Our analysis of the two-zones model shows that it quite ac- 
curately describes not only steady heat transfer [i0, 13], but also unsteady heat transfer 
in dispersed systems. This universality, in our view, shows that the introduction of a zone 
of higher porosity is the most significant factor in the formulation of a model of heat trans- 
fer. It makes it possible to correctly take into account the following extremely important 
fact: the porosity and thermal conductivity in the boundary region (which, to a significant 
degree, determine the quantity ~) can differ significantly from the corresponding quantities 
far from the heat-transfer surface [3, 9] (this is particularly true for the thermal conduc- 
tivity in developed fluidized beds). It is not difficult to see that the actual continuous 
variation of these quantities near the heat-transfer surface is taken into account in the 
model with the only change being replacement by a step-like variation. It turns out that it 
is not essential to take into account the heterogeneity over the entire volume of the bed, 
as was done in [i], for example. It is true that in the framework of the model considered 
here such a treatment has some significance. As noted above, in such a treatment one of the 
basic parameters of the model (the coefficient k) is independent of the thermal characteris- 
tics of the dispersed material in the case of a fixed bed. 

*We emphasize once again that the quantity k characterizes only the effective thickness of 
the gas film. This is possibly the explanation for the different values of k for glass and 
copper balls. Use of the two-particle model to take into account the heterogeneity of the 
granular bed leads to the value k = 0.i for both glass and copper balls (see [3], Fig. 4-23). 
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Fig. 5. Dependence of Nu on F0 for different media: I), II), III) 
numerical solution of (1)-(3) for freon-12, CO 2, and air respec- 
ticely; IV) calculation using (a); the meaning of the different 
points is the same as in Fig. 4. 

The one-zone, two-temperature models, where the zone of higher porosity near the heat- 
transfer surface (which implies a change in e and %s near the surface) is not taken into 
account, cannot provide a quantitative description of heat transfer for a wide interval of 
experimental conditions. The calculations of [3, p. 209] in the two-particle model showed 
that the effect of a gas layer with s = 0.i d had to be taken into account in order to obtain 
agreement with the experimental data for copper balls. For beds of particles with small 
thermal conductivity (such as glass balls) inclusion of a glass layer leads only to a slight 
increase in = (Figs. 4-23a and 4-23b in [3]). Ignoring the boundary zone leads to serious 
difficulties in describing heat transfer in mixed dispersed beds, for which high values of 
the effective thermal conductivities are typical (a fluidized bed, for example). Use of the 
one-zone, two-temperature model to analyze steady heat transfer in such systems involves the 
artificial introduction of the exposure time of a "packet" of particles near the heat-transfer 
surface [i]. The thermal conductivities of the gas and particles inside the "packet" are ob- 
tained as in the case of a fixed bed. 

Hence some method of taking into account the significant change of the porosity and ther- 
mal conductivity of a dispersed bed near the heat-transfer surface is necessary for any model 
claiming to provide a universal description of the phenomena. Also, as shown by our analysis, 
the inclusion of a temperature difference between the phases and heat transfer between them 
over the entire volume of the granular bed is not necessary for a dispersed layer, which can 
be treated as a quasi-homogeneous medium.* The introduction of a temperature difference bet- 
ween the phases together with a thin boundary zone significantly complicates the model and 
makes it difficult to use for analysis [3], while only marginally improving the description 
of the process. 

NOTATION 

a ~ = ah/a h" a, thermal diffusivity; B = R/s c, specific heat; d, particle diameter; 
s- f, 

Fo=a~t/l~; Fo*=a~t/d~; ~o a~t/d~; K 0 , K I, modified Bessel functions of the second kind of orders 

zero and one; K*=KI(]/P-~*~*)/Ko(]~*~*); k = s s thickness of the gas film; L, length of 

the heat-transfer surface; M, thickness of the plate; Nu = =d/%); Nu = ~d/%%; Pe =clplul~/csp8 (I --e) ta~; 

. Pe*=clpluR ~ /csPs(l--e) ia%; R, radius of the dispersed fill; r ~ radius of the cylinder; t, time; 
T, temperature; T o , inlet temperature of the gas; u, rate of filtration; u 0, rate at the start 
of fluidization; r, x, coordinates; ~, heat-transfer coefficient; e, porosity; $ = r/s 0 (cylin- 
der); $ = x/s 0 (plate); $0 = r0/s ~0 = s $* = (r~ + s )/R; 8 = (T -- T0)/T w - To); %, 

thermal conductivity; %0 h h = 2cf0fs = %s/Xf; p, density; A = 2cfpfs M (plate); A 

(cylinder). Subscripts: b, heat-exchanger; f, gas; s, solid particles; w, heat-transfer sur- 
face; superscripts: h, along the horizontal. 

r 

*In general, the introduction of a temperature difference between the phases is necessary in 
the formulation of models of heat transfer inside a granular bed (for example, in the case 
where the direction of the heat flux is opposite to the drift velocity of the heat carriers 
(2o]). 
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